Minimum Volume Enclosing Ellipsoids and Core Sets

نویسندگان

  • Piyush Kumar
  • E. Alper Yıldırım
چکیده

Abstract. We study the problem of computing a (1 + )-approximation to the minimum volume enclosing ellipsoid of a given point set S = {p1, p2, . . . , pn} ⊆ Rd. Based on a simple, initial volume approximation method, we propose a modification of Khachiyan’s first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd3/ ) operations for ∈ (0, 1). As a byproduct, our algorithm returns a core set X ⊆ S with the property that the minimum volume enclosing ellipsoid of X provides a good approximation to that of S. Furthermore, the size of X depends only on the dimension d and , but not on the number of points n. In particular, our results imply that |X | = O(d2/ ) for ∈ (0, 1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Minimum Volume Enclosing Ellipsoids Using Core Sets

We study the problem of computing the minimum volume enclosing ellipsoid containing a given point set S = {p1, p2, . . . , pn} ⊆ R. Using “core sets” and a column generation approach, we develop a (1 + )-approximation algorithm. We prove the existence of a core set X ⊆ S of size at most |X| = α = O ( d ( log d + 1 )) . We describe an algorithm that computes the set X and a (1 + )-approximation ...

متن کامل

On Khachiyan's algorithm for the computation of minimum-volume enclosing ellipsoids

Given A := {a1, . . . , am} ⊂ Rd whose affine hull is Rd, we study the problems of computing an approximate rounding of the convex hull of A and an approximation to the minimum volume enclosing ellipsoid of A. In the case of centrally symmetric sets, we first establish that Khachiyan’s barycentric coordinate descent (BCD) method is exactly the polar of the deepest cut ellipsoid method using two...

متن کامل

Computing Minimum-Volume Enclosing Axis-Aligned Ellipsoids

Given a set of points S = {x1, . . . , xm} ⊂ R and > 0, we propose and analyze an algorithm for the problem of computing a (1 + )-approximation to the minimum-volume axis-aligned ellipsoid enclosing S . We establish that our algorithm is polynomial for fixed . In addition, the algorithm returns a small core set X ⊆ S , whose size is independent of the number of points m, with the property that ...

متن کامل

Minimum-Volume Enclosing Ellipsoids and Core Sets1

We study the problem of computing a (1 + )-approximation to the minimum volume enclosing ellipsoid of a given point set S = {p, p, . . . , p} ⊆ R. Based on a simple, initial volume approximation method, we propose a modification of Khachiyan’s first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd/ ) operations for ∈ (0, 1). As a byproduct, our algorithm retur...

متن کامل

Minimum Volume Enclosing Ellipsoids

Two different methods for computing the covering ellipses of a set of points are presented. The first method finds the optimal ellipsoids with the minimum volume. The second method uses the first and second moments of the data points to compute the parameters of an ellipsoid that covers most of the points. A MATLAB software is written to verify the results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004